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Chapter 1

Concepts

What is the rasdaman approach to Big Data? Often, especially in the fields of remote sensing and
geomatics, Big Data is synonym of Big Rasters: huge space-borne/air-borne, multi/hyper-spectral
images are literally creating a deluge of bytes. So again, what does rasdaman propose to tackle this
challenge?

A first key feature is being open and standard. Data access and curation services are moving towards
web GIS platforms, from simple visualization and download, to more advanced computations: it is
a clear advantage when every service speaks the same language, and this language is usually defined
by the Open Geospatial Consortium (OGC, http://www.opengeospatial.org/).

rasdaman is the reference implementation (as of 2013) of the OGC Web Coverage Service (WCS)
[Baumann, 2012] and its team is actively participating in the evolution of the standards within
OGC, especially for everything that surrounds the so-called coverages [Baumann, 2012].

Aside of that, rasdaman is the reference (and only available implementation) of the most exciting
extension of the WCS service: the Processing Extension [Baumann and Yu, 2014]. This key feature
lets you exploit the flexibility of a full query language for coverages to request ad-hoc processing
to the server, so that you can minimize bandwidth usage on data transfer and indeed: move the
processing to the data [Hey et al., 2009].

Underneath it all, the rasdaman Array DBMS ensures ad-hoc optimizations for the access and
elaboration of multi-dimensional arrays, being especially prone to the storage of time-series or —
more generally — hypercubes of images and gridded datasets.

In the next subsections we will cover all these concepts in more detail: rasdaman and its RasQL
query language will be described in Section 1.1; the OGC coverage model (GMLCOV) is explained
in Section 1.2; finally Section 1.3 will briefly talk about the OGC web services for coverages available
with rasdaman.
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1.1 rasdaman: the RAster DAta MANager

rasdaman is a domain-neutral Array Database System: it extends standard relational database
systems with the ability to store and retrieve multi-dimensional raster data (arrays) through an
SQL-style query language: the rasdaman Query Language (RasQL).

Figure 1.1 – Embedding of rasdaman in the IT infrastructure.

Internally and invisible to the application, ar-
rays are decomposed into smaller units by
means of customizable tiling strategies, which
are then maintained in a conventional DBMS,
called the base DBMS. The rasdaman open-
source project1 uses PostgreSQL as its base
DBMS, and there it stores both the bulk array
data and the auxiliary geo-semantics for real-
world mapping of the arrays: latitudes, longi-
tudes, time coordinates, resolutions and other
ancillary annotations.

But what do we mean as an array?

A multidimensional array (see Figure 1.2) is a set of elements which are ordered in space. The
space considered here is discretized, i.e., only integer coordinates are admitted. The number of
integers needed to identify a particular position in this space is called the dimension (sometimes
also referred to as dimensionality). Each array element, which is referred to as cell, is positioned in
space through its coordinates.

dimension

upper bound

lower bound

spatial domain

cell

cell value
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Figure 1.2 – Constituents of a multi-dimensional array.

A cell can contain a single value (such as an
intensity value in case of grayscale images) or a
composite value (such as integer triples for the
red, green, and blue components of a true-color
image). All cells share the same structure which
is referred to as the array cell type or array base
type.

A collection is an heterogeneous bag of arrays,
and it does not have to be confused with the
gridded coverage (see next section) which is
stored as a single connected array (easing the
maintenance of coherent geometries within the
coverage model).

In Listing 1 we propose some examples of the RasQL query language, so you get an immediate idea
of how you can manipulate arrays with rasdaman.

For further guidance on the rasdaman query language refer to the available guide [rasdaman Gmbh,
2014] or browse http://rasdaman.org/browser/manuals_and_examples/manuals/doc-guides.
For a more scientific introduction to rasdaman, refer to Baumann et al. [1997].

1http://rasdaman.org/
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1 $ # usage
2 $ rasql
3 $ # which collections are stored ?
4 $ rasql -q ‘select m from RAS_COLLECTIONNAMES as m’ --out string | grep Result
5 Result object 1: mean_summer_airtemp
6 Result object 2: mr
7 Result object 3: rgb
8 [...]
9 $ # dimensionality of a collection ?

10 $ rasql -q ‘select sdom(m) from mr as m’ --out string | grep Result
11 Result element 1: [0:255 ,0:210]
12 $ # get the 120 th row of ‘mr ’ (hex dump)
13 $ rasql -q ‘select m[*:* ,119] from mr as m’ --out hex | grep Result
14 Result object 1: 43 43 42 30 1c 8 23 1b 1c d 1 a 0 [...]
15 $ # export ‘mr ’ collection as a PNG image
16 $ rasql -q ‘select encode (m, "png ") from mr as m’ --out file | grep Result
17 Result object 1: going into file rasql_1 . png ... ok.
18 $ # reading the base type of a cell in an array
19 $ rasql -q ‘select dbinfo (m) from mr as m’ --out string | grep baseType
20 " baseType ": " marray <char , 2>",
21 $ # import a file into a rasdaman collection called ‘test ’
22 $ rasql -q ‘create collection test GreySet ’ --user rasadmin --passwd rasadmin
23 $ rasql -q ‘insert into test values decode ($1)’ -f rasql_1 .png \
24 > --user rasadmin --passwd radmin
25 [...] reading file rasql_1 .png ... ok
26 constant 1: GMarray
27 Oid ...................:
28 Type Structure ........:
29 Type Schema ...........: marray < char >
30 Domain ................: [0:22623]
31 Base Type Schema ......: char
32 Base Type Length ......: 1
33 Data format .......... : Array
34 Data size ( bytes ).... : 22624
35 Executing insert query ... ok
36 rasql done .
37 $ # overlay a grey box on the ‘test ’ collection
38 $ rasql -q ‘update test as m set m [0:10 ,0:10] ’\
39 > ‘ assign marray x in [0:10 ,0:10] values 127c’ \
40 > --user rasadmin --passwd rasadmin
41 $ rasql -q ‘select m[9:12 ,0] from test as m’ --out hex | grep Result
42 Result object 1: 7f 7f 0 0
43 $ echo $(( 16 * 7 + 15 ))
44 127
45 $ # finally delete the ‘test ’ collection
46 $ rasql -q ‘drop collection test ’ --user rasadmin --passwd rasadmin

Listing 1 – Examples of RasQL commands on multidimensional arrays.

As previously said, arrays require ad-hoc metadata to map them to the world of real georeferenced
phenomena. Indeed there are components of rasdaman which are devoted to the handling of the
geospatial interface of rasdaman arrays:

rasgeo This application is used to ease the ingestion of georeferenced rasters into rasdaman, pos-
sibly stacked to compose 3D spatial or spatio-temporal cubes.

Petascope The OGC services Java servlet; it relies on its own database of metadata and exposes
rasdaman array data to the outside world.

SECORE The companion of Petascope and official OGC resolver for Coordinate Reference Sys-
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Figure 1.3 – A coverage is modelled as a function that returns values from its range for any direct position within its spatial,
temporal or spatiotemporal domain.

tems (CRS); Petascope relies on this component to know all the semantics of the CRS space
inside of which the coverages are defined.

In Chapter 2 we will learn how to use these components to serve coverages on the Internet. In the
next section we will proceed with an explanation of the more advanced concept of coverage.

1.2 GMLCOV: the coverage model

The term “coverage” refers to any data representation that assigns values directly to spatial position:
a coverage is a function from a spatial, temporal or spatiotemporal domain to an attribute range, as
depicted in Figure 1.3. Coverages can include rasters, triangulated irregular networks, point clouds
and polygon coverages, and they are the prevailing data structures in a number of application areas,
such as remote sensing, meteorology and mapping of bathymetry, elevation, soil and vegetation
[OGC, 2006].

A coverage domain consists of a collection of direct positions in a coordinate space that may be
defined in terms of up to three spatial dimensions as well as one (or more, Baumann et al. 2012)
temporal dimensions. A coverage range is the set of feature attribute values associated by a function
with the elements of the domain.

In this document we will consider the so-called GMLCOV coverage model [Baumann, 2012], which
is an extension to the core GML coverage model and which provides richer coverages by means of
two additional elements:

- the rangeType element, which describes the coverage’s range set data structure.

- the metadata element, to define concrete metadata structures and their semantics in exten-
sions or application profiles.

Indeed, a range value often consists of one or more fields (in remote sensing also referred to as
bands or channels), however, much more general definitions are possible. The rangeType additional
element thus describes range value structure based on the comprehensive SWE Common DataRecord
[Robin, 2011] model. A UML model of the GMLCOV coverage structure is reported in Figure 1.4.

So how are rasters represented in the coverage model? There are mainly two kinds of coverage that
relate to rasdaman more closely:
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Figure 1.4 – The GMLCOV coverage structure.

RectifiedGridCoverage Coverage whose geometry is represented by a rectified grid. A grid is
(geo)rectified when the transformation between grid coordinates and the external CRS is
affine, like shifts, rotations and shearings; we also call them rectilinear aligned, or rectilinear
non-aligned grids [Portele, 2007].

ReferenceableGridCoverage Coverage whose geometry is represented by a referenceable grid. A
grid is (geo)referenceable when there is a non-affine transformation between the grid coor-
dinates and the external CRS; this can be the case of rectilinear irreguarly-spaced grids, or
curvilinear (“warped”) grids [Portele, 2012].

Figure 1.5 – Examples of 2D rectified (À and Á) and reference-
able (Â and Ã) grids.

Indeed, while we traditionally think of a grid as
a classical aligned and orthogonal set of rectilin-
ear lines (as in the example À of Figure 1.5), the
formal definition says it is a network of curves
(grid lines) intersecting in a systematic way,
forming grid points — at the intersections —
and grid cells — at the interstices. This means
that grid lines need not be straight and orthog-
onal.

In GML, there is a third type of grid which
acts as the internal representation of any
(geo)rectified or referenceable geometric grid,
simply called Grid: in this case we have no ex-
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ternal CRS coordinates, but integer indexing of the grid points along the orthogonal grid lines.
Grids are strictly related to the concept of marrays in rasdaman, which indeed are the internal
representation of the geo-coverages exposed to the WCS service.

rasdaman supports the storage of rectified grids whose grid lines (or in this case grid axes) are aligned
with the axes of the external cartesian coordinate system. However, when stacking rectified grids
together in a same marray for building a spatial cube, or time series of images and cubes, irregular
spacing is permitted2 so that the overall coverage becomes referenceable (rectilinear, aligned and
irregularly spaced).

Time is embedded in the geometry of a coverage by i) encoding time information through a temporal
CRS which defines the epcoh time and the time step and ii) composing it with the usual geospatial
projections [Campalani et al., 2013b]. More on time integration will be explained in Section 1.3.1.

A last important point of discussion concerns the sample space of grid points (which must not be
confused with the grid cells between the grid interstices). The feature attribute values associated
with a grid point represent characteristics of the real world measured within a small space sur-
rounding a sample point: the sample space. The representation of a sample space in a CRS is
called footprint. When dealing with gridded data, it is usually assumed (like we do) that the sample
cells equally divided among the sample points so that they are represented by a second set of cells
congruent to the grid cells but offset so that each has a grid point at its center [OGC, 2006].

Note that this assumption is not valid anymore on irregular grids where no inherent resolution
exists, but this will be covered in more detail Section 1.3.1).

For more on coverages and grids, you can refer to the cited OGC normatives, or to Campalani et al.
[2013a] for our usage of grids when building spatio-temporal coverages. In the next section we will
describe the main features of the de-facto OGC standard for web services of coverages: the Web
Coverage Service.

1.3 OGC Web Services on coverages

The reference OGC standard for publishing multi-dimensional coverages is the Web Coverage Service
(WCS, http://www.opengeospatial.org/standards/wcs).

In the recent years, WCS has been completely overhauled to fulfill a more modular structure based
on a core set of minimum requirements that a WCS-compliant service must adhere to, plus a plethora
of extensions for additional service features, protocol bindings, format extensions and application
profiles. This refactoring ended up in version 2.0 of the interface standard, the current version being
2.0.1 [Baumann, 2012].

WCS 2.0 offers several advantages over previous versions, like support for general n-D raster data
and non-raster coverage types. It is also harmonized with GML and Sensor Web Enablement (SWE)
models.

What are these cornerstone WCS functionalities then? As specifed in the WCS core standard, there
are three kinds of request that can be sent to a WCS service:

2Starting from rasdaman version 9.0.0.
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GetCapabilities This operation allows a client to request information about the server’s capabil-
ities and as well summary information on the offered coverages.

DescribeCoverage This operation allows a client to request a much more detailed description on
the selected coverages, in particular their domain and range characteristics.

GetCoverage This operation allows a client to request a coverage data, usually expetided together
with some of its metadata, depending on the selected output format3.

As said before, many extensions can be plugged in a WCS service to add more interoperability and
funcionalities. The most interesting (recently accepted) extensions are the following:

※ Range Subsetting — Baumann and Yu 2014a
[Also available in rasdaman community] This extensions enables the selection of one or more
attributes defined in the range of a coverage (e.g. extract arbitrary bands from an hyperspectral
dataset).

※ Scaling — Baumann and Yu 2014b
[Also available in rasdaman community] This extension makes it possible to upscale and
downscale coverages via WCS requests.

※ Interpolation — Baumann and Yu 2014b
[Also available in rasdaman community] The companion of the Scaling extension, it allows to
declare the interpolation methods used when scaling (or when reprojecting, see CRS extension)
and of course it allows to select a preferred interpolation in a GetCoverage request4

※ Processing — Baumann and Yu 2014
[Also available in rasdaman community] The gate to the WCPS query language: this extension
lets the user write arbitrary linear algebra expressions to be applied on coverages served by
the WCS service.

※ CRS — Baumann and Yu 2014a
[Available in rasdaman enterprise] This extension allows reprojection of both input WCS
subsets — especially useful to let you subset a projected coverage via latitude/longitude
degrees — and output coverage maps.

In the next chapter you will see many of these extensions in action. For more about the WCS
service 2.0, refer to Baumann [2010a].

As mentioned in the beginning of this chapter, there is an other important standard related
to coverages: the Web Coverage Processing Service (WCPS, http://www.opengeospatial.org/
standards/wcps.

3The default output format is GML, which can provide the richest detail of metadata with respect to other popular
binary formats like GeoTIFF or HDF. A prototype of the upcoming version 2.0 of the “GML in JPEG2000” OGC
standard (http://www.opengeospatial.org/standards/gmljp2) is also available with rasdaman, in conjunction with
GDAL v10.0 or later.

4rasdaman currently only implements the neareast-neighbor interpolation.
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Although available in WCS via the Processing extension, the WCPS grammar is a standalone
standard. WCPS brings to you the potential of a full array algebra that you can apply to one or
more coverages together so that you can fetch the final product and forget about further client-side
computations.

The general structure of a WCPS requests is given in Listing 2: the so-called “processing expression”
is applied on each of the coverages specified in the given list (coverageList_*), given that the
optional boolean expression returns true when evaluated on the coverage. Each coverage is referred
to in the query by the correspondent identifier variableName_* in the processing expression.

for variableName_1 in ( coverageList_1 )
*[, variableName_N in ( coverageList_N ) ]

[ where booleanScalarExpr ]
return processingExpr

Listing 2 – Template of a WCPS processing expression.

A processing expression (processingExpr in the listing above) branches down to a miscellanea
of possible sub-expressions that are able to return either scalars (scalar expressions) or encoded
marrays (coverage expressions) and operate on both the data and metadata of a coverage.

You will see some of the WCPS capabilities in the next chapter, but for a more comprehensive
study on WCPS you can refer to the normative standard [Baumann, 2009] or as well the following
selection of scientific publications: Baumann [2010b], Passmore [2013], Campalani et al. [2014].
Further useful links are available in Section 1.3.2 too.

1.3.1 Our WCS implementation at rasdaman

Some final comments go the WCS 2.0 implementation offered by rasdaman (also known as Petascope,
see Figure 1.6).

Firstly, the service5 follows the minimal bounding-box policy. This means that the input bounding-
box requested by an enduser is adjusted to the footprints of the grid points.

Concerning the assumptions on the coverage sample spaces (see Section 1.2), our service behaves
differently on each single coverage dimension:

→ for a regularly-spaced grid dimension, the footprint of the grid points along this axis are
extended by half-resolution on both sides, having the grid point at the center of the sample
space.

→ for an irregularly-spaced grid dimension — having no formal way to specify arbitrary sample
spaces — the footprint of the grid points along this axis are 0-dimensional.

In practice, this has been conceived as the most intuitive behavior for this kind of service: this way
the geographic extension of input geo-rasters is kept and each “pixel” of a raster is represented by
a single grid point, positioned in its center. For irregular dimensions, it is foreseen to investigate
solutions for specifying (and declaring) custom sample sizes.

5Starting from version 9.0.0.
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Figure 1.6 – Infrastructure of rasdaman and its Petascope and SECORE components for exposing arrays to OGC web services.

The rasdaman WCS service is also pioneering a novel approach to the handling of time-series of
data through the definition of temporal CRSs6.

Such CRSs encode time information based on a linear counting of time-steps from an epoch date. As
for other CRS-related resources at OGC, GML-encoded definitions are publicly available via HTTP
URL. Thanks to SECORE [Misev et al., 2012], arbitrary CRS compositions can be constructed, this
way giving you the possibility to build a single space-time aquarium of analysis for your coverages.

This framework can embed time information in the geometry of a coverage, but on the other side
it needs to index time to temporal coordinates. To ease the user experience, our service lets you
also request WCS and WCPS subsets by replacing numeric time coordinates with human-readable
ISO:8601 timestamps if enclosed by double-quotes. The service does the conversion for you.

Just as a short appendix, hereby we remind you the ISO format specification for datetime strings:

ISO:8601 datetime format

date-opt-time = date-element [’T’ [time-element] [offset]]
date-element = std-date-element | ord-date-element | week-date-element
std-date-element = yyyy [’-’ MM [’-’ dd]]
ord-date-element = yyyy [’-’ DDD]
week-date-element = xxxx ’-W’ ww [’-’ e]
time-element = HH [minute-element] | [fraction]
minute-element = ’:’ mm [second-element] | [fraction]
second-element = ’:’ ss [fraction]
fraction = (’.’ | ’,’) digit+

Any other information about the rasdaman community implementations can be found in our wiki
at http://rasdaman.org.

6A first set of time CRS definitions and URIs has been recently accepted at OGC.
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1.3.2 I want more

There is a set of useful online demonstrators, tutorials and teaching material available online
for rasdaman-based web services that have spawned from the efforts of the EarthServer project
(2011—2014, http://earthserver.eu).

There you can learn more about specific applications of WCS and WCPS services, how to use them
and appreciate the advantages of server-side processing capabilities.

Here’s the list:

� “Big Earth Data Standards” demonstrator, by Jacobs University Bremen and rasdaman Gmbh
http://www.earthlook.org/

� WCS and WCPS “for dummies” video-tutorials, by MEEO Srl
http://earthserver.services.meeo.it/media-content/

� WCPS guides by the Plymouth Marine Laboratory (PML)
http://earthserver.pml.ac.uk/portal/how_to/

� PlanetServer: using WCPS for planetary science
http://planetserver.jacobs-university.de/

� WCPS overview by the British Geological Survey (BGS)
http://earthserver.bgs.ac.uk/petascopeWCPS.html

� xWCPS demo7
http://earthserver2.madgik.di.uoa.gr:8080/xWCPSApplication/

More links to related documentation as well as lighthouse applications endpoints can be found in
the project’s wiki at http://earthserver.eu/trac.

7What is xWCPS anyway? See Perperis et al. 2013.
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Chapter 2

Hands-on

After the walk-though on rasdaman and the OGC WCS and WCPS standards of the previous
chapter, it is time now to start practicing on real datasets.

The chapter is divided in three sections, for three different use cases. Each section will show you
how to properly ingest the dataset into rasdaman, and then you will be given some examples on
how to access it with the WCS and WCPS standards.

Starting with a simple 2D multiband Landsat image in Section 2.1, we will then learn how to
properly handle i) a regular time-series of images in Section 2.2 and ii) an irregular time-series of
images in Section 2.3.

Here is the list of images we will use:

$DATASETS/

2D_multiband_image/

[ 66M] N-32-50_ul_2000_s.tif

Regular/

[ 10M] MOD_WVNearInfr_20120104_34.tif

[ 14M] MOD_WVNearInfr_20120105_34.tif

[ 11M] MOD_WVNearInfr_20120106_34.tif

[9.7M] MOD_WVNearInfr_20120107_34.tif

[ 13M] MOD_WVNearInfr_20120108_34.tif

[ 14M] MOD_WVNearInfr_20120109_34.tif

Irregular/

[ 28M] FSC_0.01deg_201102010750_201102011250_MOD_panEU_ENVEOV2.1.00.tif

[ 28M] FSC_0.01deg_201102020700_201102021200_MOD_panEU_ENVEOV2.1.00.tif

[ 28M] FSC_0.01deg_201102030740_201102031240_MOD_panEU_ENVEOV2.1.00.tif

[ 28M] FSC_0.01deg_201102040820_201102041150_MOD_panEU_ENVEOV2.1.00.tif

[ 28M] FSC_0.01deg_201102050725_201102051230_MOD_panEU_ENVEOV2.1.00.tif

[ 20M] FSC_0.01deg_201302200800_201302201255_MOD_panEU_ENVEOV2.1.00.tif

[ 20M] FSC_0.01deg_201302210705_201302211215_MOD_panEU_ENVEOV2.1.00.tif

[ 20M] FSC_0.01deg_201302220750_201302221255_MOD_panEU_ENVEOV2.1.00.tif
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[ 20M] FSC_0.01deg_201302230700_201302231200_MOD_panEU_ENVEOV2.1.00.tif

[ 20M] FSC_0.01deg_201302240735_201302241240_MOD_panEU_ENVEOV2.1.00.tif

[ 20M] FSC_0.01deg_201302250735_201302251230_MOD_panEU_ENVEOV2.1.00.tif

We assume that you already have installed rasdaman in your system; otherwise refer to the pub-
lic installation instrucions on our wiki at http://rasdaman.org/wiki/Install. We will also let
rasdaman apply its default tiling to the data collections: ad-hoc tiling optimizations fall outside of
the scope of this tutorial.

You will firstly need to check that all the rasdaman components for dealing with geospatial data
are properly deployed and configured, in particular:

3 rasgeo for the ingestion of coverages via the rasimport utility (and its companion raserase);
the configuration file for rasgeo is usually placed in the $HOME/.rasdaman/rasconnect file;
the user guide is at http://rasdaman.org/wiki/RasgeoUserGuide.

3 Petascope for theWCS andWCPS interface; the configuration file is called petascope.properties
and the user guide is at http://rasdaman.org/wiki/PetascopeUserGuide.

3 SECORE for the database of CRS definitions required by Petascope; a user guide is available
at http://rasdaman.org/wiki/SecoreUserGuide.

The reference version for this tutorial is rasdaman v9.0.2. To check your rasdaman version, you can
use the RasQL version() function, as shown in Listing 3. 1.

1 $ rasql -q ‘select version () ’ --out string | grep Result
2 Result object 1: rasdaman v9 .0.2 on x86_64 -linux -gnu , [...]

Listing 3 – Getting the version of rasdaman installation.

Lsiting 4 shows the shell variables that will be used as handy system-independent shortcuts through-
out the document:

1 $ # variables
2 $ export DATASETS = $HOME / Desktop / DATASETS
3 $ export WCS2_ENDPOINT =‘http :// localhost :8080/ rasdaman /ows/wcs2 ’
4 $ export WCPS_ENDPOINT =‘http :// localhost :8080/ rasdaman /ows/wcps ’
5 $ export SECORE_ENDPOINT =‘http :// localhost :8080/ def ’
6 $ # checks
7 $ rasimport
8 $ wget "${ SECORE_ENDPOINT }/ crs/OGC /0/"
9 $ wget "${ WCS2_ENDPOINT }? service =WCS& version =2.0.1& request = GetCapabilities "

Listing 4 – Enviroment shell variables used in this chapter.

As explained in Section 1.3, the WCPS is a standalone OGC standard which can as well be embedded
in a WCS query through the WCS 2.0 Processing extension. This means that you have two choices
when sending the proposed WCPS queries2:

1RasQL ‘version()’ function is not available for releases prior to v9.0.0.
2We will use HTTP GET requests via the Key/Value Pair (KVP) encoding, which is described in the WCS KVP

encoding protocol binding [Baumann, 2013].
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1. Percent-encode it as query parameter value in a WCS request of type ProcessCoverages;

2. Percent-encode it as query parameter value and ship it as body of an HTTP POST request
to the WCPS servlet endpoint.

The WCPS servlet also provides a HTML landing page with forms that let you easily create, paste
or upload your WCPS queries.

In conclusion, Listing 5 shows you some relevant information about the system and the software
that were used to develop this tutorial:

1 $ uname -opsr
2 Linux 3.2.0 -64 - generic x86_64 GNU/ Linux
3 $ lsb_release -ds
4 Ubuntu 12.04.4 LTS
5 $ bash --version | head -n1
6 GNU bash , version 4.2.25(1) - release ( x86_64 -pc -linux - gnu)
7 $ psql --version
8 psql ( PostgreSQL ) 9.3.4
9 $ python --version

10 Python 2.7.3

Listing 5 – Information on the system used for this tutorial.

2.1 Single 2D image

In this section we will start by storing and querying a single rectified 2D image in rasdaman. After
describing and analyzing the dataset, we will use rasgeo to import it in the database (Subsec-
tion 2.1.1), then we will show how to use WCS and WCPS to play with it (Subsection 2.1.2).

The Landsat program offers the longest continuous global record of the Earth’s surface since 1972.
It has moderate spatial resolution, can be used to many research area like disaster recovery, flood,
city growth, etc. As a joint program of NASA and USGS, the Landsat archive is free available to
everyone on everywhere on the Earth. This sample RGB image — which we will call Multiband —
has been downloaded from USGS (https://landsat.usgs.gov/) and was taken by the Enhanced
Thematic Mapper (ETM) sensor onboard Landsat7. It covers part of the North of Germany and
Nord Sea, and was acquired from 2000 to 2001.

2.1.1 Data ingestion

Before importing the image, we need to know about its metadata: Listing 6 shows some relevant
information about the structure and geometry of this dataset.

We can see that this is a 4657 × 4923 32N-UTM projected (→EPSG:32632) RGB image, with
resolution around 57 meters on both easting and northing directions, and origin in the upper-left
corner3.

Let’s see now how to achieve a correct insertion of this image into rasdaman:
3rasdaman will always model a geospatial grid coverage with the origin in the upper-left corner anyway.
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1 $ export IMAGE2D ="${ DATASETS }/2 D_multiband_image /N -32 -50 _ul_2000_s .tif"
2 $ gdalinfo " $IMAGE2D " | grep ‘Band ’
3 Band 1 Block =4657 x1 Type =Byte , ColorInterp =Red
4 Band 2 Block =4657 x1 Type =Byte , ColorInterp = Green
5 Band 3 Block =4657 x1 Type =Byte , ColorInterp = Blue
6 $ gdalinfo " $IMAGE2D " | grep ‘^Size ’
7 Size is 4657 , 4923
8 $ gdalinfo " $IMAGE2D " | grep ‘PROJCS ’
9 PROJCS [" WGS 84 / UTM zone 32N",

10 $ gdalinfo " $IMAGE2D " | grep ‘Origin ’ -A1
11 Origin = (234989.621940090029966 ,6097439.627894577570260)
12 Pixel Size = (57.006119819626370 , -57.005789152955515)

Listing 6 – Metadata for the 2D image sample dataset.

1 $ # data type
2 $ rasdl -p | grep RGBImage
3 typedef marray <struct { char red , char green , char blue }, 2> RGBImage ;
4 typedef set <RGBImage > RGBSet ;
5 $ # ingest
6 $ rasimport -f " $IMAGE2D " \
7 > --coll ‘Multiband ’ \
8 > --coverage -name ‘Multiband ’ \
9 > -t RGBImage : RGBSet \

10 > --crs -uri ‘% SECORE_URL %/ crs/EPSG /0/32632 ’
11 $ # check
12 $ rasql -q " select sdom(m) from Multiband as m" --out string | grep Result
13 Result element 1: [0:4656 ,0:4922]
14 $ rasql -q " select m [2000 ,1000] from Multiband as m" --out string | grep Result
15 Result element 1: { 11, 6, 15 }
16 $ python
17 >>> import Image , numpy , os
18 >>> numpy . array ( Image .open(os. environ [‘IMAGE2D ’]))[1000 ,2000]
19 array ([11 , 6, 15] , dtype = uint8 )
20 $ wget "${ WCS2_ENDPOINT }? service =WCS& version =2.0.1& "\
21 > " request = DescribeCoverage &"\
22 > " coverageid = Multiband "

Listing 7 – Ingesting the RGB 2D image sample dataset.

...

...

CRS Axis E

CRS Axis N

Coverage’s BBOX

Grid Axis E

Grid Axis N

O

Grid origin point

57.006119819626 m

57.006119819626 m

Figure 2.1 – Visualization of the domain of the imported Multi-
band grid coverage with origin in the upper-left corner and
bounding-box (dashed line) given by the grid sample cells, and
not by the grid points.

In Listing 7 we first verify the data type that
we need to assign and that rasdaman can un-
derstand, and that is an RGBSet, which in fact
is defined as a set of RGBImage elements, which
in turn are a 2D array of RGB structs, just like
our Landsat image.

If you wonder why RGBImage is not enough as a
data type, remember from Section 1.1 that ar-
rays in rasdaman are encapsulated inside collec-
tions, which can contain one or more arrays. A
coverage is identified by a single marray, how-
ever the collection concept might be used for
grouping coverages together in a same logical
bag, as we are going to show later in this sec-
tion. To remind you that coverages and collec-
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1 $ # rasimport synopsis
2 $ rasimport | grep ‘^ --bnd ’
3 --bnd spatial import boundary (i.e. sub - setting import file (s))
4 (e.g. xmin : xmax : ymin : ymax )
5 $ # ingest
6 $ rasimport -f " $IMAGE2D " \
7 > --coll ‘Multiband ’ \
8 > --coverage -name ‘MultibandPart ’ \
9 > -t RGBImage : RGBSet \

10 > --crs -uri ‘% SECORE_URL %/ crs/EPSG /0/32632 ’ \
11 > --bnd 236000:237000:5850000:5851000
12 $ # check
13 $ rasql -q " select sdom(m) from Multiband as m" --out string | grep Result
14 Result element 1: [0:4656 ,0:4922]
15 Result element 2: [0:16 ,0:17]
16 $ wget "${ WCS2_ENDPOINT }? service =WCS& version =2.0.1& "\
17 > " request = DescribeCoverage &"\
18 > " coverageid = MultibandPart "

Listing 8 – Ingesting a spatial subset of the 2D image sample dataset.

tions are different animals, you need to specify two separate labels during ingestion: one for the
collection (--coll) and one for the coverage (--coverage-name), in our case both set to Multiband.

Thanks to the high-level interface of rasgeo, the data type was actually the only information we had
to fetch for importing the Landsat image. Due to our URI-based handling of coordinate refence
systems through SECORE, the only additional metadata which rasgeo cannot parse from the image
header is the CRS identifier, which we indeed set as --crs-uri parameter in the rasimport call.

The %SECORE_URL% keyword is our shortcut for a more portable ingestion: Petascope will replace this
keyword with the actual SECORE endpoint configured in its petascope.properties file. There
is no need to use this keyword, nor to use a single SECORE host anyway: our concept, as it was
depicted in Figure 1.6, is to have a distributed family of SECORE resolvers over the Internet, where
each one is free to offer some CRSs definitions you might want to use for your data.

As rasimport terminates, you already have transferred the Landsat image in the database. Listing 7
then just proceeds with some validity check using comparing RasQL with python pixel selection
and finally verifies that the coverage — sketched in Figure 2.1 — is already registered in the WCS
server by means of a DescribeCoverage request. Indeed, the coverage is published instantly in the
server after ingestion.

With rasimport it is also possible to import only a subset of the input image by passing a bounding
box as ‘--bnd’ argument, as shown in Listing 8. We will call the coverage MultibandPart and we
will put it inside the same collection Multiband created before, to underline the logical association
of these two arrays. Again, validity checks and a WCS DescribeCoverage request are done after
ingestion.

Now that the Landsat image is correctly imported in rasdaman, we will see some possible access
and processing use-cases that can done via WCS and WCPS requests.

As a last note, while RGB 3-byte structs is already available as built-in type in the database, you
can always use the rasdaman Definition Language (RasDL) to create your own base data type like
for your multi/hyper spectral rasters or for estimation/error model maps, for instance.
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2.1.2 WCS in action

We already verified in the previous section that our Multiband coverage has been registered in the
WCS (and consequently WCPS) service, so now we can start sending some GetCoverage request to
our server.

As a first basic example, we might just want to retrieve a spatial cutout of the coverage by using
subset KV-pairs as shown in Listing 9:

${ WCS2_ENDPOINT }?
service =WCS&
version = 2.0.1 &
request = GetCoverage &
coverageId = Multiband &
subset =E (300000 ,370000) &
subset =N (5800000 ,5850000) &
format = image /tiff

Listing 9 – Fetching a subset image from Multiband coverage via WCS. The response is shown in Figure 2.2.

Figure 2.2 – Output of the WCS GetCoverage request from Listing. 9 : spatial subsetting.

As you see, we were able to specify our region of interest by specifying intervals on separate CRS
axes. The labels that we used to identify a subset dimension are strictly equal to the labels
(gml:axisAbbrev) declared in the definition of the CRS, as shown in Listing 10:

The general usage of a KV-encoded WCS subset is then:

subset = labelaxis(coordlo[, coordhi])

When a single direct position is specified in a subset, then the coordinate is usually referred to as
slicing position, and the subset is called a slice; otherwise the subsetting operation is also called
trimming.
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1 $ wget "${ SECORE_ENDPOINT }/ crs/EPSG /0/32632 " -qO - | \
2 > grep ‘<gml: axisAbbrev >’ | tail -n 2
3 <gml: axisAbbrev >E </ gml: axisAbbrev >
4 <gml: axisAbbrev >N </ gml: axisAbbrev >
5 $ # (use ‘tail ’ to exclude the labels from the base geographic CRS)

Listing 10 – Reading the CRS axis labels from the CRS definition stored in SECORE.

* It is highly important to understand that slicing a CRS dimension automatically decreases the
dimensionality of the CRS. Due to the 1:1 association between a CRS axis and a grid coverage axis
in our WCS implementation, this also means that the grid (array) dimensionality gets reduced.

You also can see again from Listing 9 that we explictly specified image/tiff (that is a GeoTIFF in
our case) as output format for our response. By default our service returns GML-encoded responses
otherwise: while GML can give you the highest richness of metadata, it is surely more convenient
to retrieve cheaper binary formats when the data to be downloaded is sufficiently big.

As a second example, we can now use the Range Subsetting WCS extension to extract a single band
from the RGB coverage. This can be achieved by adding a rangesubset KV-pair in the request,
as shown in Listing 11:

${ WCS2_ENDPOINT }?
service =WCS&
version = 2.0.1 &
request = GetCoverage &
coverageId = Multiband &
subset =E (300000 ,370000) &
subset =N (5800000 ,5850000) &
rangesubset =b1&
format = image /tiff

Listing 11 – Fetching a subset image from Multiband coverage via WCS. The response is shown in Fig. 2.3.

Figure 2.3 – Output of the WCS GetCoverage request from Listing. 11 : extracting the red channel of a spatial subset from
an RGB image.
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1 $ wget "${ WCS2_ENDPOINT }?${ WCS2_COMMON_KVP }&"\
2 > " request = DescribeCoverage &"\
3 > " coverageid = Multiband " -qO - | grep ‘field name ’
4 <swe: field name =" b1">
5 <swe: field name =" b2">
6 <swe: field name =" b3">

Listing 12 – Reading the coverage attribute names from the SWE record (range type) of its coverage description. This
information is also available in a GetCoverage response.

The label of the coverage attribute (b1) has been automatically set by rasgeo while importing and
you can verify it by going through the GML coverage description, as shown in Listing 12. You
currently have to tweak the metadata database to customize your SWE record: not only you can
change the label, but you can add further descriptive information, definition URIs, allowed values
and declare multiple Nil values and reasons (see our developer’s guide at http://rasdaman.org/
wiki/PetascopeDevGuide).

In addition to the exctraction of a single band, the WCS Range Subsetting extension gives you some
more flexibility, by letting you ask for:

- separate bands: < Bα, Bβ, Bγ , . . . >
for instance ‘rangesubset=b1,b3’ to extract the red and blue channels

- a range of bands: < Bfrom : Bto >
for instance ‘rangesubset=b1:b2’ to extract the red and (to) green channels

While WCS is much about raw data access, you can go beyond simple READ operations with the
WCPS query language.

Spectral indexes like NDVI and the like are usually the very first example of things that WCPS can
do quite easily. Range subsetting is natively available in WCPS by means of a dot ‘.’ notation;
trimmings and slicings are — of course — available too, but beware that the coordinates separator
for a trim subset is here the colon ‘:’ (and not the comma ‘,’ as in a WCS subset).

In the following example (Listing 13) we retrieve a simple spectral index given by the average of
the blue and the red bands.

for cov in ( Multiband )
return encode (

(( cov.b3+cov.b1 )/2)[ E (490000:492000) , N (6000000)] ,
"csv")
--------
{113 ,77 ,54.5 ,77 ,0.5 ,85.5 ,107.5 ,110 , ... ,122 ,74.5}

Listing 13 – Getting average pixels of red and blue bands of the Multiband coverage on a selected area of interest using WCPS.

You see that we specified here a csv (Comma-Separated Values) encoding for our processing ex-
pression (remember Listing 2): indeed we have sliced the Northing CRS axis on 6000000 meters
North, so we could not ask for a GeoTIFF response in this case: our output is here 1D, whereas
image formats require a 2-dimensional dataset.
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An other useful application of WCPS is to build false-color images from a multi- or hyper-spectral
image. Although our sample image has only three channels, we can show how to build the proper
query by, for instance, changing the order of the RGB channels:

for cov in ( Multiband )
return encode ({

red: cov.b3;
green : cov.b1;
blue: cov.b2

}[E (300000:370000) , N (5800000:5850000)] ,
"tiff")

Listing 14 – Creating a false-color image by exchanging the position of RGB bands in the Multiband coverage using WCPS.
The response is shown in Figure 2.4.

Figure 2.4 – Output of the WCPS request from Listing. 14 : creating a false-color image.

By using the proposed RGB WCPS constructor you can also specify a pixel-wise transparency by
assigning an additional ‘alpha’ channel to some other coverage field or maybe some predefined mask
coverage you can add in the input coverage list.

Hoping that everything is fine, we now go on to the next section and start handling multiple
images of a same product at different time instants and publishing them as a single spatio-temporal
coverage.

2.2 Regular time-series of images

So far we learned how to import and retrieve a single geospatial image. In this section we will start
handling a spatio-temporal dataset and hence we will need to take care now about how to integrate
time information in our coverage domain.

As in the previous section, after describing and analyzing the dataset, we will use rasgeo to import
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it in the database (Subsection 2.2.1), then we will show how to use WCS and WCPS to play with
it (Subsection 2.2.2).

Our dataset is a regular time-series of daily MODIS-based Level 2 maps of water vapor aerosols.
Aerosols are one of the greatest sources of uncertainty in climate modeling: they vary continuously
in time and in space and can lead to variations in cloud microphysics, impacting cloud radiative
properties and climate.

The MODIS Aerosol Product monitors the ambient aerosol optical thickness over the oceans globally
and over a portion of the continents. The product is used to study aerosol climatology, sources and
sinks of specific aerosol types (e.g. sulfates and biomass-burning aerosol), interaction of aerosols
with clouds, and atmospheric corrections of remotely sensed surface reflectance over the land.

The dataset sample has been kindly provided by the Meteorological Environmental Earth Obser-
vation company (MEEO Srl — http://www.meeo.it)

2.2.1 Data ingestion

Again, before we start to import any data, we need to learn about it. Listing 15 shows the relevant
geospatial information of a sample image: we can see that the dataset is a 620 × 4414 single
band image of floating-point numbers, with resolution of 1 km and UTM projected (zone 34N
→EPSG:32634). We also know from the data providers that unavailable data pixels are set to
−9999.

1 $ export REGULAR3D ="${ DATASETS }/ Regular "
2 $ export REGULAR3D_SAMPLE ="${ REGULAR3D }/ MOD_WVNearInfr_20120104_34 .tif"
3 $ gdalinfo " $REGULAR3D_SAMPLE " | grep ‘Band ’
4 Band 1 Block =620 x3 Type = Float32 , ColorInterp = Gray
5 $ gdalinfo " $REGULAR3D_SAMPLE " | grep ‘^Size ’
6 Size is 620 , 4414
7 $ gdalinfo " $REGULAR3D_SAMPLE " | grep ‘PROJCS ’
8 PROJCS [" WGS 84 / UTM zone 34N",
9 $ gdalinfo " $REGULAR3D_SAMPLE " | grep ‘Origin ’ -A1

10 Origin = (190000.000000000000000 ,6789000.000000000000000)
11 Pixel Size = (1000.000000000000000 , -1000.000000000000000)

Listing 15 – Metadata for the regular 3D time-series sample dataset.

Before importing we now also have to know when is the data. As shown in Listing 16, our six daily
images begin on January 4th and end on January 9th, 2012. We want to load this time-series as a
regular sequence of images, where each slice occupies the 24 hours of one day: geometrically, we are
going to place the grid points at noon, with a footprint of ±12 hours along the time axis.

We need to select a temporal CRS for our time dimension, and we now decide to index time with
their correspondent ANSI date numbers: the linear counting of days starting from January 1st 1601
(day 1).

You can ask SECORE about the available time CRSs at $SECORE_ENDPOINT/def/crs/0/OGC/. You
can always fetch the definition of a CRS in case you are not sure about its meaning. As of our ANSI
date CRS, we can go trough its definition at $SECORE_ENDPOINT/crs/OGC/0/AnsiDate as shown in
Listing 16. We quickly compute the ANSI date numbers that correspond to our dates of interest,
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so we discover that we are in the range [150118, 150123].

1 $ # ANSI date CRS is days from 1601 -01 -01 (date 1), ‘ansi ’ labelled :
2 $ wget "${ SECORE_ENDPOINT }/ crs/OGC /0/ AnsiDate " -qO - | \
3 > egrep ‘uom =|< axisAbbrev >|< origin >’
4 < CoordinateSystemAxis id =" day " uom =" http :// www . opengis .net /def /uom / UCUM /0/ d">
5 <axisAbbrev >ansi </ axisAbbrev >
6 <origin >1600 -12 -31 T00 :00:00Z </ origin >
7 $ # ANSI/UNIX epoch delta is 134774 days
8 $ date -ud ‘1601 -01 -01 + 134774 days ’ +%F
9 1970 -01 -01

10 $ # date to ANSI date number (1601 -01 -01 is day 1)
11 $ for day in $( ls " $REGULAR3D " | awk -F ‘_’ ‘{ print $3 }’ ); do
12 > echo $( date -ud "$day" +%F ) = \
13 > $(( $( date -ud "$day" +%s ) / (3600 * 24) + 134774 + 1 )) ANSI date
14 > done
15 2012 -01 -04 = 150118 ANSI date
16 2012 -01 -05 = 150119 ANSI date
17 2012 -01 -06 = 150120 ANSI date
18 2012 -01 -07 = 150121 ANSI date
19 2012 -01 -08 = 150122 ANSI date
20 2012 -01 -09 = 150123 ANSI date

Listing 16 – Getting ANSI date numbers of the aerosol regular time-series.

While rasgeo can parse the geo-information of images from their header on itw own, we have to
instruct him on every aspect of time. As you can see in Listing 17, we can do so by specifiying the
following additional arguments to rasimport:

--3D
We set this flag to instruct rasgeo that this is going to be a 3-dimensional cube of images.

--csz 1
Here we specify the spacing of each cell along the Z axis4, which in our case is 1. Why is it
1? Because we set a CRS with day (http://www.opengis.net/def/uom/UCUM/0/d) as Unit
of Measure (UoM) (see again Listing 16): so we are saying that each image is separated by 1
day.

--shift 0:0:150118
We can specify here the X:Y:Z offsets that rasgeo can assign to a data cube: while we do
not need any shift in the spatial dimensions, we tell rasimport that the temporal origin of
our series is on the ANSI date number 150118. In this case 150118 represents the datetime
January 4th 2012 00:00:00.000Z: the shift is interpreted by rasimport as the lower-bound of
the associated origin sample cell, so you will automatically get the coverage origin at noon
(150118 + 1

2 = 150118.5) of the same day.

As in the previous example in Section 2.1.1, we also specify the CRS URI identifier with the
--crs-uri parameter, which in this case is a (colon-separated) concatenation of the UTM projection
and our ANSI date CRS. The order of CRS compounding is important here, since this defines the
order of spatio-temporal coordinates in the tuples of direct positions of the coverage’s domain. The

4In the rasgeo nomenclature, the three axis of a cube are always referred to as X, Y and Z axes, independently of
the CRS labels and of the kind of axes of the specific dataset.
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order of correspondent array axes can differ from this CRS compounding (especially when using
the (in)glorious EPSG:4326 or other 2D geographic CRSs which define latitude first), but this is no
problem as rasimport provides an other parameter -crs-order for adjusting axes orders (see an
example in the next section).

1 $ # data type
2 $ rasdl -p | grep FloatCube | grep 3
3 typedef marray <float , 3> FloatCube ;
4 typedef set <FloatCube > FloatSet3 ;
5 $ # rasimport help
6 $ rasimport | egrep ‘^ --csz |^ --3D|^ --shift ’
7 --3D mode for 2D (x/y) image slice import into 3D cubes
8 --csz z- axis cell size
9 --shift shifts the origin of the import image by the specified vector

10 $ # ingest
11 $ rasimport -d " $REGULAR3D " -s ‘tif ’ \
12 > --coll ‘aerosol ’ \
13 > --coverage -name ‘aerosol ’ \
14 > -t FloatCube : FloatSet3 \
15 > --crs -uri ‘% SECORE_URL %/ crs/EPSG /0/32634 ’:‘% SECORE_URL %/ crs/OGC /0/ AnsiDate ’ \
16 > --csz 1 \
17 > --3D top \
18 > --shift 0:0:150118
19 $ # check
20 $ rasql -q " select sdom(m) from aerosol as m" --out string | grep Result
21 Result element 1: [ -14:633 , -700:5322 ,150117:150122]
22 $ rasql -q " select m [300 ,2000 ,150118] from aerosol as m" \
23 > --out string | grep Result
24 Result element 1: 0.611
25 $ python
26 >>> import Image , numpy , os
27 >>> numpy . array ( Image .open(os. environ [‘REGULAR3D_SAMPLE ’]))[2000 ,300]
28 0.611
29 $ wget "${ WCS2_ENDPOINT }? service =WCS& version =2.0.1& "\
30 > " request = DescribeCoverage &"\
31 > " coverageid = aerosol " -O describeAerosols3D .xml
32 $ grep Corner describeAerosols3D .xml
33 <lowerCorner >176000 1466000 150118 </ lowerCorner >
34 <upperCorner >824000 7489000 150124 </ upperCorner >
35 $ grep -o ‘axisLabels =.* ’ describeAerosols3D .xml | head -n 1
36 axisLabels ="E N ansi " uomLabels =" metre metre d"

Listing 17 – Ingesting the regular 3D MODIS time-series.

As you see from the RasQL sdom response, the marray index for the third (temporal) dimension got
shifted to 150118 ANSI date number but this is just done for convenience by the rasgeo component,
since – remember – collections are totally unaware of real-world semantics.

Concerning time, again: you see that the bounding box shown in the WCS coverage description
indeed goes from January 4th 2012 00:00:00 (150118 ANSI date) to January 10th 2012 00:00:00
(150124 ANSI date): our last image of the series spans in fact the full January 9th day, so that at
the upper-bound border of this cell in time we reach January 10th 2012 00:00:00.

Curiously, you see in Listing 17 that the marray indexes for the are not exactly on the usual default
0 origin: this happened because actually the time-slices in our regular time-series — which by the
way we have called aerosol — are not exactly co-located on the projection plane, so rasgeo had to
manually shift each new slice so that they all get overlaid properly in the UTM projection. This is
one of the great advantages of using rasgeo.
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Indeed, looking at Listing 18, you can see the different bounding boxes of each time slice: the
overall bounding box in the cube indeed encloses all the images (see DescribeCoverage response in
Listing 17)

1 $ for image in $( find $REGULAR3D -name "*. tif" ); do
2 > echo :: $( basename " $image " )
3 > gdalinfo " $image " | grep Lower \ Left -A1
4 > done
5 :: MOD_WVNearInfr_20120104_34 . tif
6 Lower Left ( 190000.000 , 2375000.000) ( 18d 0 ’32.82"E, 21 d27 ’ 2.85" N)
7 Upper Right ( 810000.000 , 6789000.000) ( 26 d45 ’25.93"E, 61d 6 ’45.91" N)
8 :: MOD_WVNearInfr_20120105_34 . tif
9 Lower Left ( 176000.000 , 1466000.000) ( 18d 0 ’37.77"E, 13 d14 ’36.55" N)

10 Upper Right ( 824000.000 , 6942000.000) ( 27 d17 ’22.23"E, 62 d28 ’ 1.27" N)
11 :: MOD_WVNearInfr_20120109_34 . tif
12 Lower Left ( 179000.000 , 1690000.000) ( 18d 0 ’41.77"E, 15 d15 ’59.14" N)
13 Upper Right ( 822000.000 , 7190000.000) ( 27 d45 ’27.64"E, 64 d40 ’48.52" N)
14 :: MOD_WVNearInfr_20120108_34 . tif
15 Lower Left ( 179000.000 , 1759000.000) ( 18d 0’ 9.28"E, 15 d53 ’21.78" N)
16 Upper Right ( 807000.000 , 7147000.000) ( 27 d21 ’18.97"E, 64 d18 ’38.45" N)
17 :: MOD_WVNearInfr_20120107_34 . tif
18 Lower Left ( 196000.000 , 2626000.000) ( 18d 1’ 6.82"E, 23 d42 ’58.65" N)
19 Upper Right ( 805000.000 , 6794000.000) ( 26 d40 ’22.50"E, 61d 9 ’40.80" N)
20 :: MOD_WVNearInfr_20120106_34 . tif
21 Lower Left ( 196000.000 , 2686000.000) ( 18d 0 ’21.82"E, 24 d15 ’26.97" N)
22 Upper Right ( 784000.000 , 7489000.000) ( 27 d37 ’38.73"E, 67 d22 ’50.38" N)

Listing 18 – Different bounding-boxes for each of the images in the aerosol time series, automatically handled by rasgeo during
ingestion.

We have now understood all the mechanics behind the ingestion of our ANSI-date encoded time-
series of MODIS images as a 3-dimensional coverage. In the next section we try to fetch some
interesting information from it via WCS and WCPS queries.

2.2.2 WCS in action

The very first thing we can do now that we have a (regular) time-series of images is clearly to go
through time. Many platforms today provide the so-called pixel histories to depict time profiles of
certain products over a single location (pixel) or by selecting an area of interest [Natali et al., 2011].

This is easily done via a core WCS query by using slicing the easting and northing dimensions over
a single point, then trimming time to select an interval of interest (or otherwise just do not subset
it at all to keep all the available depth in time). The query is presented in Listing 19.

${ WCS2_ENDPOINT }?
service =WCS&
version = 2.0.1 &
request = GetCoverage &
coverageId = aerosol &
subset =E (500000) &
subset =N (4000000) &
subset =ansi (* ,*)

Listing 19 – Time history over a single pixel location on aerosol coverage via WCS.

What you will receive is a GMLCOV-encoded 1D array of aerosols values over (500000E, 4000000N) [m]
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and spanning all the available days of our time series.

As a second example, we now want to extract an Easting/time Hovmöller diagram from our cube.
Again to do so we just node the core WCS capabilities by properly orchestrating the subsets type
and extent on the three CRS axes that we have. This is shown in Listing 20

${ WCS2_ENDPOINT }?
service =WCS&
version = 2.0.1 &
request = GetCoverage &
coverageId = aerosol &
subset =N (4000000) &
subset =E (500125 ,510975) &
subset =ansi("2012 -01 -01","2012 -01 -31")

Listing 20 – Hovmöller Easting/time map on aerosol coverage via WCS.

Has previously mentioned (Section 1.3.1), while you actually encoded time with numerical coor-
dinates during ingestion, you can retrieve your data using human-readable ISO:8601 timestamps,
when enclosed by double-quotes (WCS core standard recommendations, Baumann 2012), Nonethe-
less you can alway directly ask for an ANSI date number: for instance you can interchangeable use
these two slicing subsets: ansi(“2012-01-04”) or ansi(150118).

If you look at the envelope of the returned coverage (by just running the query in Listing 20 in
your browser or from the terminal), you see that the minimal bounding box is returned: while we
requested the values between 500125 and 510975 metres of eastings, the returned data have been
adjusted to the interval (500000, 511000) instead, respecting the coverage resolution of 1 km.

A last example now on possible use-cases for a WCPS query. While there is a Big Variety of possible
applications of WCPS to these kinds of data [Campalani et al., 2014], we will propose here a simple
but yet delicate example: calculating the mean value of a selected time-slice.

WCPS provides the avg operator to compute the average over a multi-dimensional array, so one
could very simply run the WCPS request proposed in Listing 21.

for cov in ( aerosol )
return encode (( float )

avg(cov[ansi("2012 -01 -08")]) ,
"csv")
--------
{ -3400.09}

Listing 21 – Getting the average of the map on 2012-01-08 of the aerosol coverage using WCPS.

You can see however that some nil values (−9999) in the time-slice have counterfeited the mean
concentration (optical depths) of aerosols, whose values are instead close to 0 on average (but we
received a value close to -3400!).

So we need to find a way to exclude nil values from our computations5, and to do so we basically
rewrite the average as the explicit sum of the elements, divided by the their cardinality (

∑n
i
xi
n )

then we manually trim down to 0 the nil −9999 pixels with the help of boolean logic, as exposed in
Listing 22: as you see, we now have a correct average value in response (0.672708).

5The enterprise version of rasdaman provides seamless nil handling instead.
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for cov in ( aerosol )
return encode (( float )

add(
(cov[ansi("2012 -01 -08")] = -9999) * 0 +
(cov[ansi("2012 -01 -08")] != -9999) *

cov[ansi("2012 -01 -08")]
) / count (cov[ansi("2012 -01 -08")] != -9999) ,

"csv")
--------
{0.672708}

Listing 22 – Getting the average of the map on January 8th 2012 of the aerosol coverage using WCPS, excluding nil values.

Again, hoping everything is still fine, we now proceed to the last section of the tutorial to learn how
to import an irregular time-series of images into rasdaman.

2.3 Irregular time-series of images

In this final section we are going to ingest an irregular time-series of images.

As in the previous sections, after describing and analyzing the dataset, we will use rasgeo to import
it in the database (Subsection 2.3.1), then we will show how to use WCS and WCPS to play with
it (Subsection 2.3.2).

The images that we will use represent pan-European fractional snow cover products that hydrologists
can use for estimating the water mass available in a river basin, for instance. The data has been
kindly made available by “Cryoland” Copernicus service, which provides geospatial products on the
seasonal snow cover, glaciers, and lake/river ice derived from Earth observation satellites by means
of geo-portals (http://cryoland.eu/).

2.3.1 Data ingestion

As usual, we will start by skimming through the information that GDAL can parse from the files
(Listing 23).

1 $ export IRREGULAR3D ="${ DATASETS }/ Irregular "
2 $ export IRREGULAR3D_SAMPLE ="${ IRREGULAR3D }/"\
3 > " FSC_0 .01 deg_201302210705_201302211215_MOD_panEU_ENVEOV2 .1.00. tif"
4 $ gdalinfo " $IRREGULAR3D_SAMPLE " | grep ‘Band ’
5 Band 1 Block =5600 x1 Type =Byte , ColorInterp = Gray
6 $ gdalinfo " $IRREGULAR3D_SAMPLE " | grep ‘^Size ’
7 Size is 5600 , 3700
8 $ gdalinfo " $IRREGULAR3D_SAMPLE " | grep ‘PROJCS ’
9 $ gdalinfo " $IRREGULAR3D_SAMPLE " | grep ‘GEOGCS ’

10 GEOGCS [" WGS 84" ,
11 $ gdalinfo " $IRREGULAR3D_SAMPLE " | grep ‘Origin ’ -A1
12 Origin = ( -10.999999999999996 ,72.000000000000000)
13 Pixel Size = (0.010000000000000 , -0.010000000000000)

Listing 23 – Metadata for the irregular 3D time-series sample dataset.

This time we cope with 5600×3700 grayscale maps of 1 ◦ of resolution on both latitude and longitude
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axes. The CRS is the commonly (and wrongly) used geographic CRS based on the WGS84 datum
(→EPSG:4326): we assume that the equirectangular Plate Carrée projection is applied and that
we are working on a plane (from ellipsoidal to cartesian coordinate system).

Now concerning time, we need to decide how to encode the temporal information, but first of all
when is our time-series? By properly parsing the file names of each image we are going to ingest, we
can extract the time information (Listing 24). We have a resolution which is down to the minutes,
so it can be a good trade-off between simplicity and meaning of time coordinates to choose the
well-known UNIX time indexing: linear count of seconds from January 1st 1970 (option of the bash
date command).

1 $ for map in $( ls " $IRREGULAR3D " | awk -F ‘_’ ‘{ print $4 }’ ); do
2 > date -ud "${map :0:8} ${map :8:4} " +%F\T%R\ =\ %s\ Unix
3 > done
4 2011 -02 -01 T12 :50 = 1296564600 Unix
5 2011 -02 -02 T12 :00 = 1296648000 Unix
6 2011 -02 -03 T12 :40 = 1296736800 Unix
7 2011 -02 -04 T11 :50 = 1296820200 Unix
8 2011 -02 -05 T12 :30 = 1296909000 Unix
9 2013 -02 -20 T12 :55 = 1361364900 Unix

10 2013 -02 -21 T12 :15 = 1361448900 Unix
11 2013 -02 -22 T12 :55 = 1361537700 Unix
12 2013 -02 -23 T12 :00 = 1361620800 Unix
13 2013 -02 -24 T12 :40 = 1361709600 Unix

Listing 24 – Getting UNIX time of the images of IrregularTimeSeries.

Now that we know the numeric time coordinates associated with each image, we have sufficient
information to proceed with the usual rasgeo ingestion. With respect to the ingestion of a regular
cube presented in the previous section, we now have to take care of two more rasimport options:

--z-coords
Here we set all the (colon-separated) absolute time coordinates associated with each image in
the irregular time-series: here is where we will put our UNIX time instants.

--crs-order
As many geographical CRSs, EPSG:4326 defines latitude as the first axis. Since we strictly
refer to the CRS definitions for ordering the coordinates in the CRS tuples, we have to tell
rasimport that in this case the first grid axis (always in the horizontal East/West direction)
is not parallel to the latitude CRS axis, but rather to longitude, and we do this by assigning
an order to each axis.

Having understood these two new rasimport arguments, then you can see how the ingestion will
finally look like in Listing 25.

As you can appreciate from the RasQL sdom request, despite the irregular spacing in the external
time CRs, our ten images got stacked together along the third marray dimension without any empty
cells (sdom[m](2) = 0:9).

Looking more closely at the WCS new IrregularTimeSeries coverage description, we can see that
several coefficients got attached to the offset vector associated to the temporal axis. The offset
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1 $ # data type
2 $ rasdl -p | grep GreyCube
3 typedef marray <char , 3> GreyCube ;
4 typedef set <GreyCube > GreySet3 ;
5 $ # rasimport help
6 $ rasimport | egrep ‘^ --crs - order |^ --z- coords ’
7 --crs - order order in which CRSs are specified by the --crs - uri identifer (s)
8 --z- coords irregularly spaced z- axis coordinate (s) of the 2D image slice (s)
9 $ # ingest

10 $ rasimport -d " $IRREGULAR3D " -s ‘tif ’ \
11 > --coll ‘IrregularTimeS ’ \
12 > --coverage -name ‘IrregularTimeSeries ’ \
13 > -t GreyCube : GreySet3 \
14 > --crs -uri ‘% SECORE_URL %/ crs/EPSG /0/4326 ’:\
15 > ‘% SECORE_URL %/ crs/OGC /0/ UnixTime ’\
16 > --crs - order 1:0:2 \
17 > --csz 1 \
18 > --z- coords \
19 > 1296564600:1296648000:1296736800:1296820200:1296909000:\
20 > 1361364900:1361448900:1361537700:1361620800:1361709600
21 $ # check
22 $ rasql -q " select sdom(m) from IrregularTimeS as m" --out string | grep Result
23 Result element 1: [0:5599 ,0:3699 ,0:9]
24 $ rasql -q " select m[5599 ,3699 ,6] from IrregularTimeS as m" --out string | \
25 > grep Result
26 Result element 1: 30
27 $ python
28 >>> import Image , numpy , os
29 >>> numpy . array ( Image .open(os. environ [‘IRREGULAR3D_SAMPLE ’]))[3699 ,5599]
30 30
31 $ wget "${ WCS2_ENDPOINT }? service =WCS& version =2.0.1& "\
32 > " request = DescribeCoverage &"\
33 > " coverageid = IrregularTimeSeries " -O describeSnow3D .xml
34 $ grep Corner describeSnow3D .xml
35 <lowerCorner >35 -11 1296564600 </ lowerCorner >
36 <upperCorner >72 45 1361709600 </ upperCorner >
37 $ grep -o ‘axisLabels =.* ’ describeSnow3D .xml | head -n 1
38 axisLabels =" Lat Long unix " uomLabels =" degree degree s"

Listing 25 – Ingesting the irregular 3D time-series.

vector is equal to 1 (second, [s]), exactly as we told to rasgeo via the --csz argument, but the
coefficients are not equal to the --z-coords that we had assigned.

The temporal metadata is however correct: we pass to rasgeo handy absolute time coordinates,
that are then translated to relative coordinates, or better said coefficients. In order to retrieve the
absolute time coordinate Ti of the ith time slice:

Ti = Torigin + (vT ∗ ci)

being Torigin the absolute time coordinate of the grid origin, vT the chosen offset vector along time,
and ci the ith (weighting) coefficient. For example, the absolute UNIX time coordinate of the third
image of IrregularTimeSeries is given by: 1296564600 + (172200 ∗ 1) = 1296736800 [s]. This is
furtherly explained in Listing 26.

Now that we have correctly imported our snow images into the database we are finally going to
propose some WCS and WCPS query examples.
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1 $ grep ‘coefficients >’ describeSnow3D .xml
2 0 83400 172200 255600 344400 64800300 64884300 64973100 65056200 65145000
3 $ for map in $( ls " $IRREGULAR3D " | awk -F ‘_’ ‘{ print $4 }’ ); do
4 > echo $(( $( date -ud "${map :0:8} ${map :8:4} " +%s ) - 1296564600 ))
5 > done
6 0
7 83400
8 172200
9 255600

10 344400
11 64800300
12 64884300
13 64973100
14 65056200
15 65145000

Listing 26 – Coefficients associated to the offset vector along the irregular temporal dimension of the IrregularTimeSeries
coverage.

2.3.2 WCS in action

In the first place, we will surprisingly try to get a WCS exception from our server: in Listing 28 we
actually demonstrate that our coverage has a 0-dimensional footprint along time. We deliberately
miss our time-slice of just 1 nanosecond, but still you will see how the server will complain about
it.

${ WCS2_ENDPOINT }?
request = GetCoverage &
coverageid = IrregularTimeSeries &
subset =Lat (50 ,50.02) &
subset =Long ( -7 , -6.98)&
subset =unix("2013 -02 -24 T12 :40:00.001 Z")

Listing 27 – Sample size on an irregular dimension is 0: even though being close 1 nanosecond to a time-slice, this request on
IrregularTimeSeries will return a WCS exception.

Now let’s see some data instead, and again we start with a WCS subsetting to extract a image
from the irregular series, for instance the image at 12:40 PM on February 24th 2013. This time we
also want to exploit the WCS Scaling extension to reduce the output size by a factor of 10 (using
scalefactor key) and then we encode it as a GeoTIFF (see Listing 28). You can viualize the
response to this GetCoverage request in Figure 2.5.

${ WCS2_ENDPOINT }?
request = GetCoverage &
coverageid = IrregularTimeSeries &
subset =unix("2013 -02 -24 T12 :40Z")&
scalefactor =10&
format = image /tiff

Listing 28 – Reducing size by a scaling factor of 10 on a time slice of the IrregularTimeSeries coverage via WCS. The response
is shown in Figure 2.5.

Which interpolation has been applied to our reponse image? As declared in the service capabilities
document (response to a WCS GetCapabilities request), the only interpolation method that our
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Figure 2.5 – Visual of the output of the WCS request from Listing. 28 : scaling down with nearest neighbor interpolation.

service can do now is nearest neighbor6.

Last and not least example, we show now how to use the WCPS coverage constructor to trigger
some simple server-side computations: for instance we want to count the exceedances of fractional
snow cover with respect to a given threshold of, say, 307 over a region of interest and only for the
year 2013.

As you can see in Listing 29, this is quite easily achieved by means of a simple WCPS query. The
response is shown in Figure 2.6.

for cov in ( IrregularTimeSeries )
return encode (

coverage count_cov
over $pxx x( imageCrsDomain (cov[Long (20:25)] , Long) ),

$pxy y( imageCrsDomain (cov[ Lat (40:42)] , Lat) )
values count (

cov[Long($pxx),Lat($pxy),unix("2013 -01 -01":*)] > 30
),

"csv")

Listing 29 – Counting the exceedances of fractional snow cover in IrregularTimeSeries from January 1st on, using the WCPS
coverage constructor. A visual of the response is shown in Figure 2.6.

Again there are much more and much more advanced use-cases that can arise from using WCPS on
these datasets (see the Cryoland portal), but this falls out of the scope of this tutorial, which has
now reached the end.

6Note that scaling is only possible on regularly gridded axes: interpolation is done down at the marray level where
irregular positions are unknown, inhibiting proper scaling of irregular dimensions.

7That is the binary value, which is mapped to some fraction by means of an external palette.
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Figure 2.6 – Visual of the output of the WCPS request from Listing. 29 : counting the number of fractional snow cover
exceedances over a region of interest.

For any question we are pleased to help you via our mailing lists for users (rasdaman-users@googlegroups.com)
and developers (rasdaman-dev@googlegroups.com), or otherwise you can also dare to contact us di-
rectly (see title page).

The central hub of the rasdaman community is at http://rasdaman.org.
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